4.3.2 空间两点间的距离公式
一、基础过关
1.若A(1,3,-2)、B(-2,3,2),则A、B两点间的距离为 ( )
A. B.25 C.5 D.
2.在长方体ABCD-A1B1C1D1中,若D(0,0,0)、A(4,0,0)、B(4,2,0)、A1(4,0,3),则对角线AC1的长为 ( )
A.9 B. C.5 D.2
3.已知点A(3,3,1),B(1,0,5),C(0,1,0),则AB的中点M到点C的距离|CM|等于 ( )
A. B. C. D.
4.到点A(-1,-1,-1),B(1,1,1)的距离相等的点C(x,y,z)的坐标满足 ( )
A.x+y+z=-1 B.x+y+z=0
C.x+y+z=1 D.x+y+z=4
5.若点P(x,y,z)到平面xOz与到y轴距离相等,则P点坐标满足的关系式为____________.
6.已知P到直线AB中点的距离为3,其中A(3,5,-7),B(-2,4,3),则z=________.
7.在yOz平面上求与三个已知点A(3,1,2),B(4,-2,-2),C(0,5,1)等距离的点的坐标.
8. 如图所示,BC=4,原点O是BC的中点,点A的坐标为(,,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°,求AD的长度.
二、能力提升
9.已知A(2,1,1),B(1,1,2),C(2,0,1),则下列说法中正确的是 ( )
A.A、B、C三点可以构成直角三角形
B.A、B、C三点可以构成锐角三角形
C.A、B、C三点可以构成钝角三角形
D.A、B、C三点不能构成任何三角形
10.已知A(x,5-x,2x-1),B(1,x+2,2-x),当|AB|取最小值时,x的值为 ( )
A.19 B.- C. D.
11.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是________.
12. 在长方体ABCD—A1B1C1D1中,|AB|=|AD|=3,|AA1|=2,点M在A1C1上,|MC1|=2|A1M|,N在D1C上且为D1C的中点,求M、N两点间的距离.
三、探究与拓展
13.在xOy平面内的直线x+y=1上确定一点M,使它到点N(6,5,1)的距离最小.
答案
1.C 2.B 3.B 4.B
5.x2+z2-y2=0 6.0或-4
7.解 设P(0,y,z),由题意
所以
即,所以,
所以点P的坐标是(0,1,-2).
8.解 由题意得B(0,-2,0),C(0,2,0),
设D(0,y,z),则在Rt△BDC中,∠DCB=30°,
∴BD=2,CD=2,z=,y=-1.
∴D(0,-1,).又∵A(,,0),
∴|AD|
==.
9.A 10.C
11.(0,-1,0)
12.解 如图分别以AB、AD、AA1所在的直线为x轴、y轴、z轴建立空间直角坐标系.
由题意可知C(3,3,0),
D(0,3,0),∵|DD1|=|CC1|=2,
∴C1(3,3,2),D1(0,3,2),
∵N为CD1的中点,∴N.
M是A1C1的三等分点且靠近A1点,
∴M(1,1,2).
由两点间距离公式,得|MN|
=
=.
13.解 ∵点M在直线x+y=1(xOy平面内)上,∴可设M(x,1-x,0).
∴|MN|=
=≥,
当且仅当x=1时取等号,
∴当点M的坐标为(1,0,0)时,
|MN|min=.
相关推荐
-
高中数学选修1-2课时提升作业(二) 1.2 独立性检验的基本思想及其初步应用 探究导学课型 Word版含答案
02-05 -
高中数学选修1-2课时提升作业八1.数系的扩充和复数的概念 精讲优练课型 Word版含答案
02-05 -
高中数学选修1-2:单元质量评估(一) Word版含答案
02-05 -
高中数学人教选修1-2同步练习:第3章 数系的扩充与复数的引入 章末检测 Word版含解析
02-04 -
高中数学选修1-1课堂10分钟达标练 3.1.3 导数的几何意义Word版含答案
02-04 -
高中数学选修1-1课时提升作业 全称量词 存在量词Word版含答案
02-04 -
高中数学人教选修1-2同步练习1.2 演绎推理 Word版含解析
02-04 -
高中数学必修一配套课时作业集合与函数的概念 1.3.1第1课时 Word版含解析
02-04 -
高中数学选修1-2课时自测 当堂达标2 独立性检验的基本思想及其初步应用 精讲优练课型 Word版含答案
02-04 -
高中数学选修1-2课时自测 当堂达标2.1.2 分析法 精讲优练课型 Word版含答案
02-03