• 八年级北师大版教案
  • 五年级生物教案
  • 二年级岳麓版教案
  • 九年级上册教案
  • 高三下册教案
  • 八年级化学教案
  • 二年级鲁科版教案
  • 七年级历史教案
  • 一年级语文教案
  • 高中数学选修2-2预习导航 导数的计算(第2课时) Word版含解析

    2021-05-04 高二下册数学人教版

    预习导航
    课程目标
    学习脉络
    1.能利用导数的四则运算法则求解导函数.
    2.能运用复合函数的求导法则进行复合函数的求导.
    1.导数的运算法则
    设两个函数分别为f(x)和g(x)
    两个函数的和的导数
    [f(x)+g(x)] ′=f′(x)+g′(x)
    两个函数的差的导数
    [f(x)-g(x)] ′=f′(x)-g′(x)
    两个函数的积的导数
    [f(x)·g(x)] ′=f′(x)g(x)+f(x)g′(x)
    两个函数的商的导数
    ′=(g(x)≠0)
    思考1常数函数y=c与任意函数y=f(x)的积cf(x)的导数如何求解?有何规律?
    提示:由两函数积的求导法则,(cf(x))′=c′f(x)+cf′(x)=cf′(x),其规律是将常数函数不变,只对f(x)求导.
    2.复合函数
    复合函数的概念
    一般地,对于两个函数y=f(u)和u=g(x),如果通过变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作y=f(g(x))
    复合函数的求导法则
    复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为yx′=y′u·u′x.即y对x的导数等于y对u的导数与u对x的导数的乘积
    思考2如何利用复合函数求导法则求复合函数的导数?
    提示:求复合函数的导数,一般按以下三个步骤进行:
    (1)适当选定中间变量,正确分解复合函数的复合关系是由哪些基本初等函数构成的,即说明函数关系y=f(u),u=g(x);
    (2)分步求导(弄清每一步求导是哪个变量对哪个变量求导),要特别注意中间变量对自变量求导,即先求yu′,再求ux′;
    (3)计算y′u·u′x,并把中间变量代回原自变量(一般是x)的函数.
    整个过程可简记为分解—求导—回代.熟练以后,可以省略中间过程.
    相关推荐
    上一篇:高中数学必修4:第8课时 诱导公式五、六 Word版含解析 下一篇:让我印高中数学必修四课时训练 第一章 三角函数 章末检测(B) Word版含答案
    版权声明:本站资源均来自互联网或会员发布,仅供研究学习请勿商用以及产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
    Copyright© 2016-2018 好教案 mip.jiaoanhao.com , All Rights Reserved 湘ICP备2020019125号-1 电脑版:好教案