明目标、知重点
1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系,并会灵活应用.
2.掌握函数极值的判定及求法.
3.掌握函数在某一点取得极值的条件.
1.极值点与极值
(1)极小值点与极小值
如图,函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.
(2)极大值点与极大值
如图,函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b的左侧f′(x)>0,右侧f′(x)<0,则把点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.
(3)极大值点、极小值点统称为极值点,极大值和极小值统称为极值.
2.求函数y=f(x)的极值的方法
解方程f′(x)=0,当f′(x0)=0时:
(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值.
(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.
情境导学]
在必修1中,我们研究了函数在定义域内的最大值与最小值问题.但函数在定义域内某一点附近,也存在着哪一点的函数值大,哪一点的函数值小的问题,如何利用导数的知识来判断函数在某点附近函数值的大小问题?又如何求出这些值?这就是本节我们要研究的主要内容.
探究点一 函数的极值与导数的关系
思考1 如图观察,函数y=f(x)在d、e、f、g、h、i等点处的函数值与这些点附近的函数值有什么关系?y=f(x)在这些点处的导数值是多少?在这些点附近,y=f(x)的导数的符号有什么规律?
答 以d、e两点为例,函数y=f(x)在点x=d处的函数值f(d)比它在点x=d附近其他点的函数值都小,f′(d)=0;在x=d的附近的左侧f′(x)<0,右侧f′(x)>0.类似地,函数y=f(x)在点x=e处的函数值f(e)比它在x=e附近其他点的函数值都大,f′(e)=0;在x=e附近的左侧f′(x)>0,右侧f′(x)<0.
结论 思考1中点d叫做函数y=f(x)的极小值点,f(d)叫做函数y=f(x)的极小值;点e叫做函数y=f(x)的极大值点,f(e)叫做函数y=f(x)的极大值.极大值点、极小值点统称为极值点,极大值和极小值统称为极值.
思考2 函数的极大值一定大于极小值吗?在区间内可导函数的极大值和极小值是唯一的吗?
答 函数的极大值与极小值并无确定的大小关系,一个函数的极大值未必大于极小值;在区间内可导函数的极大值或极小值可以不止一个.
思考3 若某点处的导数值为零,那么,此点一定是极值点吗?举例说明.
答 可导函数的极值点处导数为零,但导数值为零的点不一定是极值点.可导函数f(x)在x0处取得极值的充要条件是f′(x0)=0且在x0两侧f′(x)的符号不同.
例如,函数f(x)=x3可导,且在x=0处满足f′(0)=0,但由于当x<0和x>0时均有f′(x)>0,所以x=0不是函数f(x)=x3的极值点.
思考4 函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有________个极小值点.
答案 1
解析 由图可知,在区间(a,x1),(x2,0),(0,x3)内f′(x)>0;在区间(x1,x2),(x3,b)内f′(x)<0.即f(x)在(a,x1)内单调递增,在(x1,x2)内单调递减,在(x2,x3)内单调递增,在(x3,b)内单调递减.所以,函数f(x)在开区间(a,b)内只有一个极小值点,极小值点为x=x2.故填1.
例1 求函数f(x)=x3-4x+4的极值.
解 f′(x)=x2-4.
解方程x2-4=0,得x1=-2,x2=2.
由f′(x)>0,得x<-2或x>2;
由f′(x)<0,得-2
x
(-∞,-2)
-2
(-2,2)
2
(2,+∞)
f′(x)
+
0
-
0
+
f(x)
单调递增
单调递减
-
单调递增
由表可知:当x=-2时,f(x)有极大值f(-2)=;
当x=2时,f(x)有极小值f(2)=-.
反思与感悟 求可导函数f(x)的极值的步骤:
(1)确定函数的定义区间,求导数f′(x);
(2)求方程f′(x)=0的根;
(3)用函数的导数为0的点,顺次将函数的定义区间分成若干个小开区间,并列成表格.检测f′(x)在方程根左右两侧的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值.
跟踪训练1 求函数f(x)=+3ln x的极值.
解 函数f(x)=+3ln x的定义域为(0,+∞),
f′(x)=-+=.
令f′(x)=0,得x=1.
当x变化时,f′(x)与f(x)的变化情况如下表:
x
(0,1)
1
(1,+∞)
f′(x)
-
0
+
f(x)
单调递减
3
单调递增
因此,当x=1时,f(x)有极小值f(1)=3.
探究点二 利用函数极值确定参数的值
思考 已知函数的极值,如何确定函数解析式中的参数?
答 解这类问题,通常是利用函数的导数在极值点处的取值等于零来建立关于参数的方程,从而求出参数的值.需注意的是,可导函数在某点处的导数值等于零只是函数在该点处取得极值的必要条件,所以必须对求出的参数值进行检验,看是否符合函数取得极值的条件.
例2 已知f(x)=x3+3ax2+bx+a2在x=-1时有极值0,求常数a,b的值.
解 因为f(x)在x=-1时有极值0,
且f′(x)=3x2+6ax+b,
所以即
解之得或
当a=1,b=3时,f′(x)=3x2+6x+3=3(x+1)2≥0,
所以f(x)在R上为增函数,无极值,故舍去.
当a=2,b=9时,f′(x)=3x2+12x+9=3(x+1)(x+3).
当x∈(-3,-1)时,f(x)为减函数;
当x∈(-1,+∞)时,f(x)为增函数,
所以f(x)在x=-1时取得极小值,因此a=2,b=9.
反思与感悟 (1)利用函数的极值确定参数的值,常根据极值点处导数为0和极值两个条件列方程组,利用待定系数法求解.
(2)因为“导数值等于零”不是“此点为极值点”的充要条件,所以利用待定系数法求解后,必须验证根的合理性.
跟踪训练2 设x=1与x=2是函数f(x)=aln x+bx2+x的两个极值点.
(1)试确定常数a和b的值;
(2)判断x=1,x=2是函数f(x)的极大值点还是极小值点,并说明理由.
解 (1)∵f(x)=aln x+bx2+x,
∴f′(x)=+2bx+1.
由极值点的必要条件可知:
f′(1)=f′(2)=0,
∴a+2b+1=0且+4b+1=0,
解方程组得,a=-,b=-.
(2)由(1)可知f(x)=-ln x-x2+x,
且函数f(x)=-ln x-x2+x的定义域是(0,+∞),
f′(x)=-x-1-x+1=-.
当x∈(0,1)时,f′(x)<0;当x∈(1,2)时,f′(x)>0;
当x∈(2,+∞)时,f′(x)<0;
所以,x=1是函数f(x)的极小值点,
x=2是函数f(x)的极大值点.
探究点三 函数极值的综合应用
例3 设函数f(x)=x3-6x+5,x∈R.
(1)求函数f(x)的单调区间和极值;
(2)若关于x的方程f(x)=a有三个不同的实根,求实数a的取值范围.
解 (1)f′(x)=3x2-6,令f′(x)=0,
解得x1=-,x2=.
因为当x>或x<-时,f′(x)>0;
当-<x<时,f′(x)<0.
所以,f(x)的单调递增区间为(-∞,-)和(,+∞);
单调递减区间为(-,).
当x=-时,f(x)有极大值5+4;
当x=时,f(x)有极小值5-4.
(2)由(1)的分析知y=f(x)的图象的大致形状及走向如图所示.
所以,当5-4<a<5+4时,
直线y=a与y=f(x)的图象有三个不同的交点,
即方程f(x)=a有三个不同的实根.
反思与感悟 用求导的方法确定方程根的个数,是一种很有效的方法.它通过函数的变化情况,运用数形结合思想来确定函数图象与x轴的交点个数,从而判断方程根的个数.
跟踪训练3 若函数f(x)=2x3-6x+k在R上只有一个零点,求常数k的取值范围.
解 f(x)=2x3-6x+k,
则f′(x)=6x2-6,
令f′(x)=0,
得x=-1或x=1,
可知f(x)在(-1,1)上是单调减函数,
f(x)在(-∞,-1)和(1,+∞)上是单调增函数.
f(x)的极大值为f(-1)=4+k,
f(x)的极小值为f(1)=-4+k.
要使函数f(x)只有一个零点,
只需4+k<0或-4+k>0(如图所示)
或
即k<-4或k>4.
∴k的取值范围是(-∞,-4)∪(4,+∞).
1.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取得极值”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
答案 B
解析 对于f(x)=x3,f′(x)=3x2,f′(0)=0,
不能推出f(x)在x=0处取极值,反之成立.故选B.
2.函数f(x)的定义域为R,导函数f′(x)的图象如图所示,则函数f(x)( )
A.无极大值点,有四个极小值点
B.有三个极大值点,两个极小值点
C.有两个极大值点,两个极小值点
D.有四个极大值点,无极小值点
答案 C
解析 f′(x)的符号由正变负,则f(x0)是极大值,f′(x)的符号由负变正,则f(x0)是极小值,由图象易知有两个极大值点,两个极小值点.
3.已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为( )
A.-1C.a<-1或a>2 D.a<-3或a>6
答案 D
解析 f′(x)=3x2+2ax+a+6,
因为f(x)既有极大值又有极小值,
那么Δ=(2a)2-4×3×(a+6)>0,
解得a>6或a<-3.
4.设a∈R,若函数y=ex+ax,x∈R有大于零的极值点,则a的取值范围为________.
答案 (-∞,-1)
解析 y′=ex+a,由y′=0得x=ln(-a).
由题意知ln(-a)>0,∴a<-1.
5.直线y=a与函数y=x3-3x的图象有三个相异的交点,则a的取值范围是________.
答案 -2解析 f′(x)=3x2-3.
令f′(x)=0可以得到x=1或x=-1,
∵f(1)=-2,f(-1)=2,∴-2呈重点、现规律]
1.在极值的定义中,取得极值的点称为极值点,极值点指的是自变量的值,极值指的是函数值.
2.函数的极值是函数的局部性质.可导函数f(x)在点x=x0处取得极值的充要条件是f′(x0)=0且在x=x0两侧f′(x)符号相反.
3.利用函数的极值可以确定参数的值,解决一些方程的解和图象的交点问题.
一、基础过关
1.函数y=f(x)的定义域为(a,b),y=f′(x)的图象如图,则函数y=f(x)在开区间(a,b)内取得极小值的点有( )
A.1个 B.2个
C.3个 D.4个
答案 A
解析 当满足f′(x)=0的点,左侧f′(x)<0,右侧f′(x)>0时,该点为极小值点,观察题图,只有一个极小值点.
2.下列关于函数的极值的说法正确的是( )
A.导数值为0的点一定是函数的极值点
B.函数的极小值一定小于它的极大值
C.函数在定义域内有一个极大值和一个极小值
D.若f(x)在(a,b)内有极值,那么f(x)在(a,b)内不是单调函数
答案 D
解析 由极值的概念可知只有D正确.
3.若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于( )
A.2 B.3 C.6 D.9
答案 D
解析 f′(x)=12x2-2ax-2b,
∵f(x)在x=1处有极值,
∴f′(1)=12-2a-2b=0,∴a+b=6.
又a>0,b>0,∴a+b≥2,∴2≤6,
∴ab≤9,当且仅当a=b=3时等号成立,
∴ab的最大值为9.
4.函数y=x3-3x2-9x(-2
B.极大值5,极小值-11
C.极大值5,无极小值
D.极小值-27,无极大值
答案 C
解析 由y′=3x2-6x-9=0,得x=-1或x=3,当x<-1或x>3时,y′>0,当-1
A.当x∈(-∞,1)时,f′(x)>0;
当x∈(1,+∞)时,f′(x)<0
B.当x∈(-∞,1)时,f′(x)>0;
当x∈(1,+∞)时,f′(x)>0
C.当x∈(-∞,1)时,f′(x)<0;
当x∈(1,+∞)时,f′(x)>0
D.当x∈(-∞,1)时,f′(x)<0;
当x∈(1,+∞)时,f′(x)<0
答案 C
解析 ∵f(x)在x=1处存在极小值,
∴x<1时,f′(x)<0,x>1时,f′(x)>0.
6.若函数y=x3-3ax+a在(1,2)内有极小值,则实数a的取值范围是( )
A.1C.24或a<1
答案 B
解析 y′=3x2-3a,当a≤0时,y′≥0,
函数y=x3-3ax+a为单调函数,不合题意,舍去;当a>0时,y′=3x2-3a=0⇒x=±,不难分析,当1<<2,即1二、能力提升
7.若函数f(x)=在x=1处取得极值,则a=________.
答案 3
解析 ∵f′(x)=′
=
=,
又∵函数f(x)在x=1处取极值,
∴f′(1)=0.
∴1+2×1-a=0,
∴a=3.
验证知a=3符合题意.
8.设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是( )
A.∀x∈R,f(x)≤f(x0)
B.-x0是f(-x)的极小值点
C.-x0是-f(x)的极小值点
D.-x0是-f(-x)的极小值点
答案 D
解析 A错,因为极大值未必是最大值.B错,因为函数y=f(x)与函数y=f(-x)的图象关于y轴对称,-x0应是f(-x)的极大值点.C错,函数y=f(x)与函数y=-f(x)的图象关于x轴对称,x0应为-f(x)的极小值点.D正确,函数y=f(x)与y=-f(-x)的图象关于原点对称,-x0应为y=-f(-x)的极小值点.
9.函数f(x)=x3+3ax2+3(a+2)x+3既有极大值又有极小值,则实数a的取值范围是________.
答案 (-∞,-1)∪(2,+∞)
解析 ∵f′(x)=3x2+6ax+3(a+2),令3x2+6ax+3(a+2)=0,即x2+2ax+a+2=0,∵函数f(x)有极大值和极小值,∴方程x2+2ax+a+2=0有两个不相等的实数根,即Δ=4a2-4a-8>0,解得a>2或a<-1.
10.求下列函数的极值:
(1)f(x)=;
(2)f(x)=x2e-x.
解 (1)函数的定义域为(-∞,1)∪(1,+∞).
∵f′(x)=,
令f′(x)=0,得x1=-1,x2=2.
当x变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,-1)
-1
(-1,1)
1
(1,2)
2
(2,+∞)
f′(x)
+
0
-
+
0
+
f(x)
单调递增
-
单调递减
单调递增
3
单调递增
故当x=-1时,函数有极大值,
并且极大值为f(-1)=-,无极小值.
(2)函数的定义域为R,
f′(x)=2xe-x+x2·′
=2xe-x-x2e-x
=x(2-x)e-x,
令f′(x)=0,得x=0或x=2.
当x变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,0)
0
(0,2)
2
(2,+∞)
f′(x)
-
0
+
0
-
f(x)
单调递减
0
单调递增
4e-2
单调递减
由上表可以看出,当x=0时,函数有极小值,且为f(0)=0;
当x=2时,函数有极大值,且为f(2)=4e-2.
11.已知f(x)=x3+mx2-2m2x-4(m为常数,且m>0)有极大值-,求m的值.
解 ∵f′(x)=3x2+mx-2m2=(x+m)(3x-2m),
令f′(x)=0,则x=-m或x=m.
当x变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,-m)
-m
m
f′(x)
+
0
-
0
+
f(x)
单调递增
极大值
单调递减
极小值
单调递增
∴f(x)极大值=f(-m)=-m3+m3+2m3-4
=-,
∴m=1.
12.设a为实数,函数f(x)=x3-x2-x+a.
(1)求f(x)的极值;
(2)当a在什么范围内取值时,曲线y=f(x)与x轴仅有一个交点?
解 (1)f′(x)=3x2-2x-1.
令f′(x)=0,则x=-或x=1.
当x变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,-)
-
(-,1)
1
(1,+∞)
f′(x)
+
0
-
0
+
f(x)
单调递增
极大值
单调递减
极小值
单调递增
所以f(x)的极大值是f(-)=+a,
极小值是f(1)=a-1.
(2)函数f(x)=x3-x2-x+a
=(x-1)2(x+1)+a-1,
由此可知,x取足够大的正数时,有f(x)>0,
x取足够小的负数时,有f(x)<0,
所以曲线y=f(x)与x轴至少有一个交点.
由(1)知f(x)极大值=f(-)=+a,
f(x)极小值=f(1)=a-1.
∵曲线y=f(x)与x轴仅有一个交点,
∴f(x)极大值<0或f(x)极小值>0,
即+a<0或a-1>0,∴a<-或a>1,
∴当a∈(-∞,-)∪(1,+∞)时,曲线y=f(x)与x轴仅有一个交点.
三、探究与拓展
13.已知函数f(x)=ex-ln(x+m).
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;
(2)当m≤2时,证明f(x)>0.
(1)解 f(x)=ex-ln(x+m)⇒f′(x)=ex-⇒f′(0)=e0-=0⇒m=1,
定义域为{x|x>-1},
f′(x)=ex-=,
显然f(x)在(-1,0]上单调递减,在0,+∞)上单调递增.
(2)证明 令g(x)=ex-ln(x+2),
则g′(x)=ex-(x>-2).
h(x)=g′(x)=ex-(x>-2)⇒h′(x)=ex+>0,
所以h(x)是单调递增函数,h(x)=0至多只有一个实数根,
又g′(-)=-<0,g′(0)=1->0,
所以h(x)=g′(x)=0的唯一实根在区间内,
设g′(x)=0的根为t,
则有g′(t)=et-=0,
所以,et=⇒t+2=e-t,
当x∈(-2,t)时,g′(x)
所以g(x)min=g(t)=et-ln(t+2)=+t=>0,
当m≤2时,有ln(x+m)≤ln(x+2),
所以f(x)=ex-ln(x+m)≥ex-ln(x+2)
=g(x)≥g(x)min>0.