• 一年级历史教案
  • 高二西师大版教案
  • 九年级冀教版教案
  • 一年级化学教案
  • 高一北师大版教案
  • 高三化学教案
  • 六年级西师大版教案
  • 教学教案华师大版教案
  • 八年级生物教案
  • 高中数学必修5学业分层测评18 一元二次不等式的应用 Word版含解析

    2021-02-08 高三上册数学人教版

    学业分层测评(十八)
    (建议用时:45分钟)
    [学业达标]
    一、选择题
    1.不等式>0的解集是(  )
    A.
    B.
    C.
    D.
    【解析】 >0⇔(4x+2)(3x-1)>0⇔x>或x<-,此不等式的解集为.
    【答案】 A
    2.如果A={x|ax2-ax+1<0}=∅,则实数a的取值集合为(  )
    A.{a|0B.{a|0≤a<4}
    C.{a|0D.{a|0≤a≤4}
    【解析】 当a=0时,有1<0,故A=∅.
    当a≠0时,若A=∅,则有
    解得0综上,a∈{a|0≤a≤4}.
    【答案】 D
    3.关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等式>0的解集是(  )
    A.(-∞,0)∪(1,+∞)
    B.(-1,2)
    C.(1,2)
    D.(-∞,-1)∪(2,+∞)
    【解析】 ∵ax-b>0的解集为(1,+∞),
    ∴a=b>0,∴>0⇔>0,
    ∴x<-1或x>2.
    【答案】 D
    4.设集合P={m|-1A.PQ     B.QP
    C.P=Q D.P∩Q=∅
    【解析】 当m=0时,-4<0对任意实数x∈R恒成立;当m≠0时,由mx2+4mx-4<0对任意实数x∈R恒成立可得,
    解得-1综上所述,Q={m|-1∴PQ,故选A.
    【答案】 A
    5.在R上定义运算:AB=A(1-B),若不等式(x-a)(x+a)<1对任意的实数x∈R恒成立,则实数a的取值范围是(  )
    A.-1B.0C.-D.-【解析】 (x-a)(x+a)=(x-a)[1-(x+a)]=-x2+x+a2-a,∴-x2+x+a2-a<1,即x2-x-a2+a+1>0对x∈R恒成立,∴Δ=1-4(-a2+a+1)=4a2-4a-3<0,∴(2a-3)(2a+1)<0,即-【答案】 C
    二、填空题
    6.若a<0,则不等式>0的解集是________.
    【解析】 原不等式可化为(x-4a)(x+5a)>0,
    由于a<0,所以4a<-5a,
    因此原不等式的解集为{x|x<4a或x>-5a}.
    【答案】 {x|x<4a或x>-5a}
    7.偶函数y=f(x)和奇函数y=g(x)的定义域均为[-4,4],f(x)在[-4,0]上,g(x)在[0,4]上的图象如图3­2­2所示,则不等式<0的解集为________.
    图3­2­2
    【解析】 由已知得当x∈(-4,-2)∪(2,4)时,f(x)>0,当x∈(-2,2)时,f(x)<0,当x∈(-4,0)时,g(x)>0,x∈(0,4)时,g(x)<0.
    所以当x∈(-2,0)∪(2,4)时,<0.
    所以不等式<0的解集为{x∈R|-2【答案】 {x∈R|-28.某地每年销售木材约20万m3,每m3价格为2 400元.为了减少木材消耗,决定按销售收入的t%征收木材税,这样每年的木材销售量减少t万m3.为了既减少木材消耗又保证税金收入每年不少于900万元,则t的取值范围是________.
    【解析】 设按销售收入的t%征收木材税时,税金收入为y万元,则y=2 400×t%=60(8t-t2).
    令y≥900,即60(8t-t2)≥900,解得3≤t≤5.
    【答案】 [3,5]
    三、解答题
    9.(2016·亳州高二检测)若不等式(1-a)x2-4x+6>0的解集是{x|-3(1)解不等式2x2+(2-a)x-a>0;
    (2)b为何值时,ax2+bx+3≥0的解集为R?
    【解】 (1)由题意知1-a<0,且-3和1是方程(1-a)x2-4x+6=0的两根,
    ∴解得a=3.
    ∴不等式2x2+(2-a)x-a>0,
    即为2x2-x-3>0,解得x<-1或x>.
    ∴所求不等式的解集为.
    (2)ax2+bx+3≥0,即3x2+bx+3≥0,
    若此不等式解集为R,则Δ=b2-4×3×3≤0,
    ∴-6≤b≤6.
    10.某地区上年度电价为0.8元/kw·h,年用电量为a kw·h.本年度计划将电价降低到0.55元/kw·h至0.75元/kw·h之间,而用户期望电价为0.4元/kw·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.3元/kw·h.
    (1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;
    (2)设k=0.2a,当电价最低定为多少时仍可保证电力部门的收益比上年度至少增长20%?
    注:收益=实际用电量×(实际电价-成本价)
    【解】 (1)设下调后的电价为x元/千瓦时,依题意知,用电量增至+a,电力部门的收益为
    y=(x-0.3)(0.55≤x≤0.75).
    (2)依题意,有
    整理,得
    解此不等式,得0.60≤x≤0.75.
    ∴当电价最低定为0.60元/千瓦时时,仍可保证电力部门的收益比上年度至少增长20%.
    [能力提升]
    1.若实数α,β为方程x2-2mx+m+6=0的两根,则(α-1)2+(β-1)2的最小值为(  )
    A.8 B.14
    C.-14 D.-
    【解析】 ∵Δ=(-2m)2-4(m+6)≥0,
    ∴m2-m-6≥0,∴m≥3或m≤-2.
    (α-1)2+(β-1)2=α2+β2-2(α+β)+2=(α+β)2-2αβ-2(α+β)+2=(2m)2-2(m+6)-2(2m)+2=4m2-6m-10=42-,∵m≥3或m≤-2,∴当m=3时,(α-1)2+(β-1)2取最小值8.
    【答案】 A
    2.函数f(x)=的定义域为R,则实数k的取值范围为(  )
    A.(0,1) B.[1,+∞)
    C.[0,1] D.(-∞,0]
    【解析】 kx2-6kx+(k+8)≥0恒成立,
    当k=0时,满足.
    当k≠0时,⇒0<k≤1.
    综上,0≤k≤1.
    【答案】 C
    3.若不等式<0对一切x∈R恒成立,则实数m的取值范围为________.
    【解析】 ∵x2-8x+20=(x-4)2+4>0,
    ∴只需mx2-mx-1<0恒成立.
    故m=0或
    ∴-4<m≤0.
    【答案】 -4<m≤0
    4.设不等式mx2-2x-m+1<0对于满足|m|≤2的一切m的值都成立,求x的取值范围.
    【解】 原不等式可化为(x2-1)m-(2x-1)<0.
    令f(m)=(x2-1)m-(2x-1),其中m∈[-2,2], 则原命题等价于关于m的一次函数(x2-1≠0时)或常数函数(x2-1=0时)在m∈[-2,2]上的函数值恒小于零.
    (1)当x2-1=0时,由f(m)=-(2x-1)<0得x=1;
    (2)当x2-1>0时,f(m)在[-2,2]上是增函数,要使f(m)<0在[-2,2]上恒成立,只需
    解得1<x<;
    (3)当x2-1<0时,f(m)在[-2,2]上是减函数,要使f(m)<0在[-2,2]上恒成立,只需
    解得<x<1.
    综合(1)(2)(3),得<x<.
    相关推荐
    上一篇:高中数学必修5学业分层测评8 等差数列的概念与简单表示 Word版含解析 下一篇:让我印高中数学选修4-5学业分层测评11 Word版含答案
    版权声明:本站资源均来自互联网或会员发布,仅供研究学习请勿商用以及产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
    Copyright© 2016-2018 好教案 mip.jiaoanhao.com , All Rights Reserved 湘ICP备2020019125号-1 电脑版:好教案