• 五年级冀教版试卷
  • 四年级岳麓版试卷
  • 高三华师大版试卷
  • 五年级上册试卷
  • 七年级湘教版试卷
  • 七年级西师大版试卷
  • 三年级鲁科版试卷
  • 三年级上册试卷
  • 高二数学试卷
  • 高中数学选修1-2课时提升作业七2.2 反证法 Word版含答案

    2021-10-27 高一下册数学人教版

    温馨提示:
    此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。
    课时提升作业 七
     反 证 法
    一、选择题(每小题5分,共25分)
    1.下列关于反证法的说法正确的有 (  )
    ①反证法的应用需要逆向思维;②反证法是一种间接证法,否定结论时,一定要全面否定;③反证法推出的矛盾不能与已知矛盾;④使用反证法必须先否定结论,当结论的反面出现多种情况时,论证一种即可.
    A.①②     B.①③   
    C.②③     D.③④
    【解析】选A.容易判断①②正确;反证法推出的矛盾可以与已知条件矛盾,故③错误;当结论的反面出现多种情况时,应对各种情况全部进行论证,故④错误.
    2.(2014·山东高考)用反证法证明命题:“已知a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是 (  )
    A.方程x2+ax+b=0没有实根
    B.方程x2+ax+b=0至多有一个实根
    C.方程x2+ax+b=0至多有两个实根
    D.方程x2+ax+b=0恰好有两个实根
    【解题指南】本题考查了反证法,从问题的反面出发进行假设.一元二次方程根的个数为0,1,2.因此至少有一个实根包含1根或两根,它的反面为0个根.
    【解析】选A.“已知a,b为实数,则方程x2+ax+b=0至少有一个实根”的含义是方程有根,故反面是“方程x2+ax+b=0没有实根.”
    3.(2016·淄博高二检测)已知a>b>0,用反证法证明≥(n∈N*)时.假设的内容是 (  )
    A.=成立 B.≤成立
    C.<成立 D.<且=成立
    【解析】选C.因a>b>0时,,恒有意义,且≥的反面是<.故选C.
    4.(2016·青岛高二检测)有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”;乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖”,四位歌手的话只有两位是对的,则获奖的歌手是 (  )
    A.甲 B.乙 C.丙 D.丁
    【解析】选C.若甲获奖,则甲、乙、丙、丁的话都错误;同理可推知乙、丙、丁获奖情况,最后获奖者应是丙.
    5.(2016·济南高二检测)设实数a,b,c满足a+b+c=1,则a,b,c中至少有一个数不小于 (  )
    A.0    B.  C.  D.1
    【解析】选B.三个数a,b,c的和为1,其平均数为,故三个数中至少有一个大于或等于.假设a,b,c都小于,则a+b+c<1,与已知矛盾.故a,b,c中至少有一个数不小于.
    二、填空题(每小题5分,共15分)
    6.(2016·大连高二检测)在△ABC中,若AB=AC,P为△ABC内一点.∠APB>∠APC.求证:∠BAP<∠CAP.用反证法证明时,应分:假设________和________两类.
    【解析】反证法中对结论的否定是全面否定,∠BAP<∠CAP的反面是∠BAP=∠CAP和∠BAP>∠CAP.
    答案:∠BAP=∠CAP ∠BAP>∠CAP
    7.命题“关于x的方程ax=b(a≠0)的解是唯一的”的结论的否定是________.
    【解析】方程解的情况有:①无解;②唯一解;③两个或两个以上的解.
    答案:无解或至少两解
    8.完成反证法证题的全过程.
    题目:设a1,a2,…,a7是由数字1,2,…,7任意排成的一个数列,求证:乘积p=(a1-1)(a2-2)…(a7-7)为偶数.
    证明:假设p为奇数,则________均为奇数.
    因奇数个奇数之和为奇数,故有
    奇数=__________________ 
    =__________________ 
    =0.
    但奇数≠偶数,这一矛盾说明p为偶数.
    【解析】由假设p为奇数可知a1-1,a2-2,…,a7-7均为奇数,故(a1-1)+(a2-2)+…+(a7-7)=(a1+a2+…+a7)-(1+2+…+7)=0为奇数,这与0为偶数矛盾.
    答案:a1-1,a2-2,…,a7-7
    (a1-1)+(a2-2)+…+(a7-7)
    (a1+a2+…+a7)-(1+2+…+7)
    三、解答题(每小题10分,共20分)
    9.(2016·深圳高二检测)设函数f(x)=ax2+bx+c(a≠0)中,a,b,c均为整数,且f(0),f(1)均为奇数.
    求证:f(x)=0无整数根.
    【证明】假设f(x)=0有整数根n,
    则an2+bn+c=0,
    由f(0)为奇数,即c为奇数,
    f(1)为奇数,即a+b+c为奇数,所以a+b为偶数,
    又an2+bn=-c为奇数,
    所以n与an+b均为奇数,又a+b为偶数,
    所以an-a为奇数,即(n-1)a为奇数,
    所以n-1为奇数,这与n为奇数矛盾.
    所以f(x)=0无整数根.
    【拓展延伸】适用反证法证明的题型
    适用反证法证明的题型有:
    (1)一些基本命题、基本定理.
    (2)易导出与已知矛盾的命题.
    (3)“否定性”命题.
    (4)“唯一性”命题.
    (5)“必然性”命题.
    (6)“至多”“至少”类命题.
    (7)涉及“无限”结论的命题等.
    10.(2016·威海高二检测)已知f(x)=ax+(a>1).
    证明:方程f(x)=0没有负数根.
    【证明】假设x0是方程f(x)=0的负数根.
    则x0<0且x0≠-1,且=-,
    因为a>1,所以0<<1,即0<-<1,
    解得所以假设不成立,故方程f(x)=0无负数根.
    一、选择题(每小题5分,共10分)
    1.(2016·天津高二检测)用反证法证明命题“已知x1>0,x2≠1,且xn+1=,证明对任意正整数n,都有xn>xn+1”,其假设应为 (  )
    A.对任意正整数n,有xn≤xn+1
    B.存在正整数n,使xn>xn+1
    C.存在正整数n,使xn≤xn+1
    D.存在正整数n,使xn≥xn-1且xn≥xn+1
    【解析】选C.“任意正整数n”的否定是“存在正整数n”,“xn>xn+1”的否定是“xn≤xn+1”.
    2.有以下结论:
    ①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;
    ②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.下列说法中正确的是 (  )
    A.①与②的假设都错误
    B.①与②的假设都正确
    C.①的假设正确;②的假设错误
    D.①的假设错误;②的假设正确
    【解析】选D.用反证法证明问题时,其假设是原命题的否定,故①的假设应为“p+q>2”;②的假设为“两根的绝对值不都小于1”,故①假设错误.②假设正确.
    二、填空题(每小题5分,共10分)
    3.(2016·福州高二检测)用反证法证明“若函数f(x)=x2+px+q.则|f(1)|,|f(2)|,|f(3)|中至少有一个不小于”时,假设内容是____________.
    【解析】“|f(1)|,|f(2)|,|f(3)|中至少有一个不小于”的反面是“|f(1)|,|f(2)|,|f(3)|都小于”.
    答案:|f(1)|,|f(2)|,|f(3)|都小于
    4.(2016·郑州高二检测)设a,b是两个实数,给出下列条件:①a+b=1;②a+b=2;③a+b>2;④a2+b2>2.
    其中能推出“a,b中至少有一个大于1”的条件是________(填序号).
    【解题指南】可采用特殊值法或反证法逐一验证.
    【解析】若a=,b=,则a+b=1,但a<1,b<1,故①不能推出.若a=b=1,则a+b=2,故②不能推出.
    若a=-2,b=1,则a2+b2>2,故④不能推出.
    对于③,即a+b>2,则a,b中至少有一个大于1.
    反证法:假设a≤1且b≤1,则a+b≤2与a+b>2矛盾,因此假设不成立,故a,b中至少有一个大于1.
    答案:③
    三、解答题(每小题10分,共20分)
    5.(2016·海淀高二检测)若a,b,c∈R,且a=x2-2y+,b=y2-2z+,c=z2-2x+,求证:a,b,c中至少有一个大于0.
    【证明】假设a,b,c都不大于0,即a≤0,b≤0,c≤0,
    则a+b+c≤0.
    而a+b+c=++
    =x2+y2+z2-2x-2y-2z+π
    =(x-1)2+(y-1)2+(z-1)2+π-3>0,
    这与a+b+c≤0矛盾.
    所以a,b,c中至少有一个大于0.
    6.(2016·南昌高二检测)等差数列{an}的前n项和为Sn,a1=1+,S3=9+3.
    (1)求数列{an}的通项an与前n项的和Sn.
    (2)设bn=.求证:数列{bn}中任意不同三项都不可能成等比数列.
    【解析】(1)设等差数列{an}的公差为d,则
    S3=3a1+3d=9+3,又a1=1+,解得d=2,
    所以an=2n+-1,Sn=n(n+).
    (2)由(1)得bn==n+,
    假设数列{bn}中存在三项bp,bq,br(p,q,r互不相等)成等比数列.
    则=bp·br,即(q+)2=(p+)·(r+),
    即(q2-pr)+(2q-p-r)=0,
    所以 
    即=pr,得(p-r)2=0,
    得p=r,与p,q,r互不相等矛盾.
    所以数列{bn}中任意不同三项都不可能成等比数列.
    关闭Word文档返回原板块
    相关推荐
    上一篇:高中数学必修1课时提升作业(十五) 下一篇:让我印高中数学选修1-1作业:2.3.2抛物线的简单几何性质(含答案)
    版权声明:本站资源均来自互联网或会员发布,仅供研究学习请勿商用以及产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
    Copyright© 2016-2018 好教案 mip.jiaoanhao.com , All Rights Reserved 湘ICP备2020019125号-1 电脑版:好教案