• 六年级教科版试卷
  • 六年级西师大版试卷
  • 高二化学试卷
  • 五年级生物试卷
  • 六年级冀教版试卷
  • 三年级语文试卷
  • 三年级苏教版试卷
  • 九年级湘教版试卷
  • 考试试卷语文试卷
  • 人教版高中数学必修二检测点、直线、平面之间的位置关系 课后提升作业 八 2.1.2 Word版含解析

    2021-03-30 高一下册数学人教版

    温馨提示:
    此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。
    课后提升作业八
    空间中直线与直线之间的位置关系.Com]
    (30分钟 60分)
    一、选择题(每小题5分,共40分)
    1.( 2016·杭州高二检测)正方体AC1中,E,F分别是边BC,C1D的中点,则直线A1B与直线EF的位置关系是 (  )
    A.相交            B.异面            C.平行            D.垂直
    【解析】选A.如图所示,连接CD1,则CD1与C1D的交点为点F,由正方体可得四边形A1BCD1是平行四边形,在平行四边形A1BCD1内,E,F分别是边BC,CD1的中点,所以EF∥BD1,所以直线A1B与直线EF相交.
    2.若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是 (  )
    A.l1⊥l4
    B.l1∥l4
    C.l1与l4既不垂直也不平行
    D.l1与l4的位置关系不确定
    【解题指南】由于l2∥l3,所以l1与l4的位置关系可以通过同垂直于一条直线的两条直线加以判断.
    【解析】选D.因为l2∥l3,所以l1⊥l2,l3⊥l4实质上就是l1与l4同垂直于一条直线,所以l1⊥l4,l1∥l4,l1与l4既不垂直也不平行都有可能成立,但不是一定成立,故l1与l4的位置关系不确定.
    3.空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是 
    (  )
    A.空间四边形                    B.矩形
    C.菱形                            D.正方形
    【解析】选B.如图,易证四边形EFGH为平行四边形.
    又因为E,F分别为AB,BC的中点,
    所以EF∥AC,
    又FG∥BD,
    所以∠EFG或其补角为AC与BD所成的角,而AC与BD所成的角为90°,
    所以∠EFG=90°,
    故四边形EFGH为矩形.
    4.(2016·青岛高一检测)已知在正方体ABCD-A1B1C1D1中(如图),l⊂平面A1B1C1D1,且l与B1C1不平行,则下列一定不可能的是 (  )

    A.l与AD平行
    B.l与AD不平行
    C.l与AC平行
    D.l与BD垂直
    【解析】选A.假设l∥AD,则由AD∥BC∥B1C1,知l∥B1C1,这与l与B1C1不平行矛盾,所以l与AD不平行.
    5.(2016·济宁高一检测)如图,E,F是AD上互异的两点,G,H是BC上互异的两点,由图可知,①AB与CD互为异面直线;②FH分别与DC,DB互为异面直线;③EG与FH互为异面直线;④EG与AB互为异面直线.其中叙述正确的是 (  )
    A.①③            B.②④            C.①④            D.①②
    【解析】选A.AB与平面BCD交于B点,且B∉CD,故AB与CD互为异面直线,故①正确;当H点落在C或F落在D点上时,FH与CD相交;当H落在B或F点落在D上时,FH与DB相交,故②错误;FH与平面EGD交于F点,而F∉EG,故EG与FH互为异面直线,故③正确;当G落在B上或E落在A上时,EG与AB相交,故④错误.
    6.如图,在空间四边形ABCD中,AD=BC=2,E,F分别为AB,CD的中点,EF=,则AD与BC所成的角为(  )
    A.30°                    B.60°
    C.90°                    D.120°
    【解析】选C.取AC的中点G,连接EG,FG,则EG

    相关推荐
    上一篇:高中数学选修1-2模块综合检测(一~二) Word版含解析 下一篇:让我印高中数学(人教版必修2)配套练习 第一章1.2.3
    版权声明:本站资源均来自互联网或会员发布,仅供研究学习请勿商用以及产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
    Copyright© 2016-2018 好教案 mip.jiaoanhao.com , All Rights Reserved 湘ICP备2020019125号-1 电脑版:好教案