• 高中作文生物作文
  • 初中作文数学作文
  • 作文中心教科版作文
  • 作文中心物理作文
  • 高中作文西师大版作文
  • 小学作文华师大版作文
  • 作文中心历史作文
  • 高中作文北师大版作文
  • 小学作文青岛版作文
  • 高中数学必修一配套课时作业基本初等函数 (Ⅰ) 2.1.2(二) Word版含解析

    2020-11-25 高一上册数学人教版

    2.1.2 指数函数及其性质(二)
    课时目标 1.理解指数函数的单调性与底数a的关系,能运用指数函数的单调性解决一些问题.2.理解指数函数的底数a对函数图象的影响.
    1.下列一定是指数函数的是(  )
    A.y=-3xB.y=xx(x>0,且x≠1)
    C.y=(a-2)x(a>3) D.y=(1-)x
    2.指数函数y=ax与y=bx的图象如图,则(  )
    A.a<0,b<0B.a<0,b>0
    C.01D.03.函数y=πx的值域是(  )
    A.(0,+∞) B.[0,+∞)
    C.RD.(-∞,0)
    4.若()2a+1<()3-2a,则实数a的取值范围是(  )
    A.(1,+∞) B.(,+∞)
    C.(-∞,1) D.(-∞,)
    5.设<()b<()a<1,则(  )
    A.aaC.ab6.若指数函数f(x)=(a+1)x是R上的减函数,那么a的取值范围为(  )
    A.a<2 B.a>2
    C.-1一、选择题
    1.设P={y|y=x2,x∈R},Q={y|y=2x,x∈R},则(  )
    A.QPB.QP
    C.P∩Q={2,4}D.P∩Q={(2,4)}
    2.函数y=的值域是(  )
    A.[0,+∞) B.[0,4]
    C.[0,4) D.(0,4)
    3.函数y=ax在[0,1]上的最大值与最小值的和为3,则函数y=2ax-1在[0,1]上的最大值是(  )
    A.6B.1
    C.3D.
    4.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则(  )
    A.f(x)与g(x)均为偶函数
    B.f(x)为偶函数,g(x)为奇函数
    C.f(x)与g(x)均为奇函数
    D.f(x)为奇函数,g(x)为偶函数
    5.函数y=f(x)的图象与函数g(x)=ex+2的图象关于原点对称,则f(x)的表达式为(  )
    A.f(x)=-ex-2B.f(x)=-e-x+2
    C.f(x)=-e-x-2D.f(x)=e-x+2
    6.已知a=,b=,c=,则a,b,c三个数的大小关系是(  )
    A.cC.a题 号
    1
    2
    3
    4
    5
    6
    答 案
    二、填空题
    7.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.
    8.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<-的解集是________________.
    9.函数y=的单调递增区间是________.
    三、解答题
    10.(1)设f(x)=2u,u=g(x),g(x)是R上的单调增函数,试判断f(x)的单调性;
    (2)求函数y=的单调区间.
    11.函数f(x)=4x-2x+1+3的定义域为[-,].
    (1)设t=2x,求t的取值范围;
    (2)求函数f(x)的值域.
    能力提升
    12.函数y=2x-x2的图象大致是(  )
    13.已知函数f(x)=.
    (1)求f[f(0)+4]的值;
    (2)求证:f(x)在R上是增函数;
    (3)解不等式:0
    1.比较两个指数式值的大小主要有以下方法:
    (1)比较形如am与an的大小,可运用指数函数y=ax的单调性.
    (2)比较形如am与bn的大小,一般找一个“中间值c”,若amc且c>bn,则am>bn.
    2.了解由y=f(u)及u=φ(x)的单调性探求y=f[φ(x)]的单调性的一般方法.
    2.1.2 指数函数及其性质(二)
    知识梳理
    1.C 2.C 3.A
    4.B [∵函数y=()x在R上为减函数,
    ∴2a+1>3-2a,∴a>.]
    5.C [由已知条件得0∴ab6.C
    作业设计
    1.B [因为P={y|y≥0},Q={y|y>0},所以QP.]
    2.C [∵4x>0,∴0≤16-4x<16,
    ∴∈[0,4).]
    3.C [函数y=ax在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a0+a1=3,解得a=2,因此函数y=2ax-1=4x-1在[0,1]上是单调递增函数,当x=1时,ymax=3.]
    4.B [∵f(-x)=3-x+3x=f(x),
    g(-x)=3-x-3x=-g(x).]
    5.C [∵y=f(x)的图象与g(x)=ex+2的图象关于原点对称,
    ∴f(x)=-g(-x)=-(e-x+2)=-e-x-2.]
    6.A [∵y=()x是减函数,->-,
    ∴b>a>1.又07.19
    解析 假设第一天荷叶覆盖水面面积为1,则荷叶覆盖水面面积y与生长时间的函数关系为y=2x-1,当x=20时,长满水面,所以生长19天时,荷叶布满水面一半.
    8.(-∞,-1)
    解析 ∵f(x)是定义在R上的奇函数,
    ∴f(0)=0.
    当x<0时,f(x)=-f(-x)=-(1-2x)=2x-1.
    当x>0时,由1-2-x<-,()x>,得x∈∅;
    当x=0时,f(0)=0<-不成立;
    当x<0时,由2x-1<-,2x<2-1,得x<-1.
    综上可知x∈(-∞,-1).
    9.[1,+∞)
    解析 利用复合函数同增异减的判断方法去判断.
    令u=-x2+2x,则y=()u在u∈R上为减函数,
    问题转化为求u=-x2+2x的单调递减区间,即为x∈[1,+∞).
    10.解 (1)设x1又由y=2u的增减性得,即f(x1)所以f(x)为R上的增函数.
    (2)令u=x2-2x-1=(x-1)2-2,
    则u在区间[1,+∞)上为增函数.
    根据(1)可知y=在[1,+∞)上为增函数.
    同理可得函数y在(-∞,1]上为单调减函数.
    即函数y的增区间为[1,+∞),减区间为(-∞,1].
    11.解 (1)∵t=2x在x∈[-,]上单调递增,
    ∴t∈[,].
    (2)函数可化为:f(x)=g(t)=t2-2t+3,
    g(t)在[,1]上递减,在[1,]上递增,
    比较得g()∴f(x)min=g(1)=2,
    f(x)max=g()=5-2.
    ∴函数的值域为[2,5-2].
    12.A [当x→-∞时,2x→0,所以y=2x-x2→-∞,
    所以排除C、D.
    当x=3时,y=-1,所以排除B.故选A.]
    13.(1)解 ∵f(0)==0,
    ∴f[f(0)+4]=f(0+4)=f(4)==.
    (2)证明 设x1,x2∈R且x1则>>0,->0,
    即f(x1)(3)解 由0又f(x)在R上是增函数,∴0即2
    相关推荐
    上一篇:高中数学选修1-1课堂10分钟达标练 2.3.1 抛物线及其标准方程Word版含答案 下一篇:让我印高中数学选修1-1学业分层测评19 生活中的优化问题举例 Word版含解析
    版权声明:本站资源均来自互联网或会员发布,仅供研究学习请勿商用以及产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
    Copyright© 2016-2018 好教案 mip.jiaoanhao.com , All Rights Reserved 湘ICP备2020019125号-1 电脑版:好教案