(建议用时:45分钟)
[学业达标]
一、选择题
1.给出下列命题:①2014年2月14日是中国传统节日元宵节,同时也是西方的情人节;②10的倍数一定是5的倍数;③梯形不是矩形;④方程x2=1的解是x=±1.其中使用逻辑联结词的命题有( )
A.1个 B.2个
C.3个 D.4个
【解析】 ①中使用逻辑联结词“且”;②中没有使用逻辑联结词;③中使用逻辑联结词“非”;④中使用逻辑联结词“或”.命题①③④使用逻辑联结词,共有3个,故选C.
【答案】 C
2.命题“ab≠0”是指( )
A.a≠0且b≠0
B.a≠0或b≠0
C.a,b中至少有一个不为0
D.a,b不都为0
【解析】 只有a≠0且b≠0时,才有ab≠0.
【答案】 A
3.已知命题p:3≥3,q:3>4,则下列判断正确的是( )
A.p∨q为真,p∧q为真,綈p为假
B.p∨q为真,p∧q为假,綈p为真
C.p∨q为假,p∧q为假,綈p为假
D.p∨q为真,p∧q为假,綈p为假
【解析】 ∵p为真命题,q为假命题,∴p∨q为真,p∧q为假,綈p为假,应选D.
【答案】 D
4.命题p:若a>0,b>0,则ab=1是a+b≥2的必要不充分条件,命题q:函数y=log2的定义域是(-∞,-2)∪(3,+∞),则( )
A.“p∨q”为假 B.“p∧q”为真
C.p真q假 D.p假q真
【解析】 由命题p:a>0,b>0,ab=1得a+b≥2=2,倒推不成立,所以p为假命题;命题q:由>0,得x<-2或x>3,所以q为真命题.
【答案】 D
5.已知p:|x-1|≥2,q:x∈Z,若p∧q,綈q同时为假命题,则满足条件的x的集合为( ) 【导学号:18490021】
A.{x|x≤-1或x≥3,x∉Z}
B.{x|-1≤x≤3,x∉Z}
C.{x|x<-1或x∈Z}
D.{x|-1<x<3,x∈Z}
【解析】 p:x≥3或x≤-1,q:x∈Z,由p∧q,綈q同时为假命题知,p假q真,∴x满足-1<x<3且x∈Z,故满足条件的集合为{x|-1<x<3,x∈Z}.
【答案】 D
二、填空题
6.已知条件p:(x+1)2>4,条件q:x>a,且綈p是綈q的充分不必要条件,则a的取值范围是________.
【解析】 由綈p是綈q的充分不必要条件,可知綈p⇒綈q,但綈q綈p,由一个命题与它的逆否命题等价,可知q⇒p但p q,又p:x>1或x<-3,可知{x|x>a}{x|x<-3或x>1},所以a≥1.
【答案】 [1,+∞)
7.分别用“p或q”,“p且q”,“非p”填空:
(1)命题“非空集A∩B中的元素既是A中的元素,也是B中的元素”是________的形式;
(2)命题“非空集A∪B中的元素是A中元素或B中的元素”是________的形式;
(3)命题“非空集∁UA的元素是U中的元素但不是A中的元素”是________的形式.
【解析】 (1)命题可以写为“非空集A∩B中的元素是A中的元素,且是B中的元素”,故填p且q;(2)“是A中元素或B中的元素”含有逻辑联结词“或”,故填p或q;(3)“不是A中的元素”暗含逻辑联结词“非”,故填非p.
【答案】 p且q p或q 非p
8.在一次射击比赛中,甲、乙两位运动员各射击一次,设命题p:“甲的成绩超过9环”,命题q:“乙的成绩超过8环”,则命题“p∨(綈q)”表示________.
【解析】 綈q表示乙的成绩没有超过8环,所以命题“p∨(綈q)”表示甲的成绩超过9环或乙的成绩没有超过8环.
【答案】 甲的成绩超过9环或乙的成绩没有超过8环
三、解答题
9.用“且”“或”改写下列命题并判断真假.
(1)1不是质数也不是合数;
(2)2既是偶数又是质数;
(3)5和7都是质数;
(4)2≤3.
【解】 (1)p:1不是质数;q:1不是合数,p∧q:1不是质数且1不是合数.(真)
(2)p:2是偶数;q:2是质数;p∧q:2是偶数且2是质数.(真)
(3)p:5是质数;q:7是质数;p∧q:5是质数且7是质数.(真)
(4)2≤3⇔2<3或2=3.(真)
10.在一次模拟打飞机的游戏中,小李接连射击了两次,设命题p是“第一次击中飞机”,命题q是“第二次击中飞机”.试用p,q以及逻辑联结词“或”“且”“非”(∨,∧,綈)表示下列命题:
【导学号:18490022】
(1)命题s:两次都击中飞机;
(2)命题r:两次都没击中飞机;
(3)命题t:恰有一次击中了飞机;
(4)命题u:至少有一次击中了飞机.
【解】 (1)两次都击中飞机表示:第一次击中飞机且第二次击中飞机,所以命题s表示为p∧q.
(2)两次都没击中飞机表示:第一次没有击中飞机且第二次没有击中飞机,所以命题r表示为綈p∧綈q.
(3)恰有一次击中了飞机包含两种情况:
①第一次击中飞机且第二次没有击中飞机,此时表示为p∧綈q;
②第一次没有击中飞机且第二次击中飞机,此时表示为綈p∧q.
所以命题t表示为(p∧綈q)∨(綈p∧q).
(4)法一 命题u表示:第一次击中飞机或第二次击中飞机,所以命题u表示为p∨q.
法二 綈u:两次都没击中飞机,即是命题r,所以命题u是綈r,从而命题u表示为綈(綈p∧綈q).
法三 命题u表示:第一次击中飞机且第二次没有击中飞机,或者第一次没有击中飞机且第二次击中飞机,或者第一次击中飞机且第二次击中飞机,所以命题u表示为(p∧綈q)∨(綈p∧q)∨(p∧q).
[能力提升]
1.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )
A.(綈p)∨(綈q) B.p∨(綈q)
C.(綈p)∧(綈q) D.p∨q
【解析】 依题意,綈p:“甲没有降落在指定范围”,綈q:“乙没有降落在指定范围”,因此“至少有一位学员没有降落在指定范围”可表示为(綈p)∨(綈q).
【答案】 A
2.已知命题p1:函数y=2x-2-x在R上为增函数,p2:函数y=2x+2-x在R上为减函数.则在命题q1:p1∨p2,q2:p1∧p2,q3:(綈p1)∨p2,q4:p1∧(綈p2)中,真命题是( )
A.q1,q3 B.q2,q3
C.q1,q4 D.q2,q4
【解析】 ∵y=2x在R上是增函数,y=2-x在R上是减函数,∴y=2x-2-x在R上是增函数为真命题,y=2x+2-x在R上为减函数是假命题.
因此p1是真命题,则綈p1为假命题;p2是假命题,则綈p2为真命题.
∴q1:p1∨p2是真命题,q2:p1∧p2是假命题,
∴q3:(綈p1)∨p2为假命题,q4:p1∧(綈p2)为真命题.
∴真命题是q1,q4,故选C.
【答案】 C
3.命题p:若mx2-mx-1<0恒成立,则-4<m<0.命题q:关于x的不等式(x-a)(x-b)<0的解集为{x|a
则m=0或
解得-4<m≤0.∴命题p是假命题.
又(x-a)(x-b)<0的解集与a,b的大小有关,
∴q假.
因此“綈p”为真,“p∨q”与“綈p∧q”为假.
【答案】 綈p
4.已知m>0,p:(x+2)(x-6)≤0,q:2-m≤x≤2+m.
(1)若p是q的充分条件,求实数m的取值范围;
(2)若m=5,“p或q”为真命题,“p且q”为假命题,求实数x的取值范围. 【导学号:18490023】
【解】 p:-2≤x≤6,q:2-m≤x≤2+m(m>0).
(1)∵p是q的充分条件,
∴解之得m≥4.
故实数m的取值范围是[4,+∞).
(2)当m=5时,q:-3≤x≤7.
∵“p或q”为真命题,“p且q”为假命题,
∴p,q一真一假,
当p真q假时,无解;
当p假q真时,
解得-3≤x<-2或6