• 一年级教科版试卷
  • 一年级物理试卷
  • 高一数学试卷
  • 四年级北师大版试卷
  • 五年级华师大版试卷
  • 七年级北师大版试卷
  • 高二冀教版试卷
  • 五年级西师大版试卷
  • 七年级上册试卷
  • 高一数学人教A版必修四教案:1.3 三角函数的诱导公式(一 Word版含答案

    2020-11-25 高二下册数学人教版

    1.3 三角函数的诱导公式
    一、教材分析
    (一)教材的地位与作用:
    1、本节课教学内容“诱导公式(二)、(三)、(四)”是人教版数学4,第一章1、3节内容,是学生已学习过的三角函数定义、同角三角函数基本关系式及诱导公式(一)等知识的延续和拓展,又是推导诱导公式(五)的理论依据。
    2、求三角函数值是三角函数中的重要问题之一。诱导公式是求三角函数值的基本方法。诱导公式的重要作用是把求任意角的三角函数值问题转化为求0°~90°角的三角函数值问题。诱导公式的推导过程,体现了数学的数形结合和归纳转化思想方法,反映了从特殊到一般的数学归纳思维形式。这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大的意义。
    (二)教学重点与难点:
    1、教学重点:诱导公式的推导及应用。
    2、教学难点:相关角边的几何对称关系及诱导公式结构特征的认识。
    二、教学目标
    1、知识与技能
    (1)识记诱导公式.
    (2)理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数的值,并进行简单三角函数式的化简和证明.
    2、过程与方法
    (1)通过诱导公式的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法.
    (2)通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式.
    (3)通过基础训练题组和能力训练题组的练习,提高学生分析问题和解决问题的实践能力.
    3、情感态度和价值观
    (1)通过诱导公式的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神.
    (2)通过归纳思维的训练,培养学生踏实细致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为已知的辨证唯物主义思想.
    三、教学设想
    三角函数的诱导公式(一)
    (一)创设问题情景,引导学生观察、联想,导入课题
    I 重现已有相关知识,为学习新知识作铺垫。
    1、提问:试叙述三角函数定义
    2、提问:试写出诱导公式(一)
    3、提问:试说出诱导公式的结构特征
    4、板书诱导公式(一)及结构特征:
    诱导公式(一)
    sin(k·2π+)=sin cos(k·2π+)=cos
    tg(k·2π+)=tg
    (k∈Z)
    结构特征:①终边相同的角的同一三角函数值相等
    ②把求任意角的三角函数值问题转化为求0°~360°角的三角函数值问题。
    5、问题:试求下列三角函数的值
    (1)sin1110° (2)sin1290°
    学生:(1)sin1110°=sin(3×360°+30°)=sin30°=
    (2)sin1290°=sin(3×360°+210°)=sin210°
    (至此,大多数学生无法再运算,从已有知识导出新问题)
    6、引导学生观察演示(一),并思考下列问题一:
    演示(一)
    (1)210°能否用(180°+)的形式表达?
    (0°<<90°=(210°=180°+30°)
    (2)210°角的终边与30°的终边关系如何?(互为反向延长线或关于原点对称)
    (3)设210°、30°角的终边分别交单位圆于点p、p',则点p与p'的位置关系如何?(关于原点对称)
    (4)设点p(x,y),则点p’怎样表示? [p'(-x,-y)]
    (5)sin210°与sin30°的值关系如何?
    7、师生共同分析:
    在求sin210°的过程中,我们把210°表示成(180°+30°)后,利用210°与30°角的终边及其与单位圆交点p与p′关于原点对称,借助三角函数定义,把180°~270°角的三角函数值转化为求0°~90°角的三角函数值。
    8、导入课题:对于任意角,sin与sin(180+)的关系如何呢?试说出你的猜想。
    (二)运用迁移规律,引导学生联想类比、归纳、推导公式
    (I)1、引导学生观察演示(二),并思考下列问题二:
    设为任意角 演示(二)
    (1)角与(180°+)的终边关系如何?(互为反向延长线或关于原点对称)
    (2)设与(180°+)的终边分别交单位圆于p,p′,则点p与
    p′具有什么关系? (关于原点对称)
    (3)设点p(x,y),那么点p′坐标怎样表示? [p′(-x,-y)]
    (4)sin与sin(180°+)、cos与cos(180°+)关系如何?
    (5)tg与tg(180°+)
    (6)经过探索,你能把上述结论归纳成公式吗?其公式特征如何?
    2、教师针对学生思考中存在的问题,适时点拨、引导,师生共同归纳推导公式。
    (1)板书诱导公式(二)
    sin(180°+)=-sin cos(180°+)=-cos
    tg(180°+)=tg
    (2)结构特征:①函数名不变,符号看象限(把看作锐角时)
    ②把求(180°+)的三角函数值转化为求的三角函数值。
    3、基础训练题组一:求下列各三角函数值(可查表)
    ①cos225° ②tg-π ③sinπ
    4、用相同的方法归纳出公式:
    sin(π-)=sin
    cos(π-)=-cos
    tg(π-)=-tg
    5、引导学生观察演示(三),并思考下列问题三:
    演示(三)
    (1)30°与(-30°)角的终边关系如何? (关于x轴对称)
    (2)设30°与(-30°)的终边分别交单位圆于点p、p′,则点p与
    p′的关系如何?
    (3)设点p(x,y),则点p′的坐标怎样表示? [p′(x,-y)]
    (4)sin(-30°)与sin30°的值关系如何?
    6、师生共同分析:在求sin(-30°)值的过程中,我们利用(-30°)与30°角的终边及其与单位圆交点p与p′关于原点对称的关系,借助三角函数定义求sin(-30°)的值。
    (Ⅱ)导入新问题:对于任意角 sin与sin(-)的关系如何呢?试说出你的猜想?
    1、引导学生观察演示(四),并思考下列问题四:
    设为任意角 演示(四)
    (1)与(-)角的终边位置关系如何? (关于x轴对称)
    (2)设与(-)角的终边分别交单位圆于点p、p′,则点p与p′位置关系如何?(关于x轴对称)
    (3)设点p(x,y),那么点p′的坐标怎样表示? [p′(x,-y)]
    (4)sin与sin(-)、 cos与cos(-)关系如何?
    (5)tg与tg(-)
    (6)经过探索,你能把上述结论归纳成公式吗?其公式结构特征如何?
    2、学生分组讨论,尝试推导公式,教师巡视及时反馈、矫正、讲评
    3、板书诱导公式(三)
    sin(-)=-sin cos(-)=cos
    tg(-)=-tg
    结构特征:①函数名不变,符号看象限(把看作锐角)
    ②把求(-)的三角函数值转化为求的三角函数值
    4、基础训练题组二:求下列各三角函数值(可查表)
    1sin(-) ②tg(-210°) ③cos(-240°12′)
    (三)构建知识系统、掌握方法、强化能力
    I、课堂小结:(以填空形式让学生自己完成)
    1、诱导公式(一)、(二)、(三)
    sin(k·2π+)=sin cos(k·2π+)=cos
    tg(k·2π+)=tg
    (k∈Z)
    sin(π+)=-sin cos(π+)=-cos
    tg(π+)=tg
    sin(-)=-sin cos(-)=cos
    tg(-)=-tg
    用相同的方法,归纳出公式
    Sin(π-α)=Sin
    Cos(π-α)=-cosα
    Ten(π-α)=-tanα
    2、公式的结构特征:函数名不变,符号看象限(把看作锐角时)
    (Ⅱ)能力训练题组:(检测学生综合运用知识能力)
    1、已知sin(π+)=(为第四象限角),求cos(π+)+tg(-)的值。
    2、求下列各三角函数值
    (1)tg(- π) (2)sin(=- π)
    (3)cos(-5100151) (4)sin(-)
    (III)方法及步骤:
    (IV)作业与课外思考题
    通过上述两题的探索,你能推导出新的公式吗?
    (四)、教法分析
    根据教学内容的结构特征和学生学习数学的心理规律,本节课彩了“问题、类比、发现、归纳”探究式思维训练教学方法。
    (1)利用已有知识导出新的问题,创设问题情境,引起学生学习兴趣,激发学生的求知欲,达到以旧拓新的目的。
    (2)由(1800+300)与300、(-300)与300终π-与)边对称关系的特殊例子,利多媒体动态演示。学生对“α为任意角”的认识更具完备性,通过联想、引导学生进行导,问题类比、方法迁移,发现任意角α与(1800+α)、-α终边的对称关系,进行寅,从特殊到一般的归纳推理训练,学生的归纳思维更具客观性、严密性和深刻性,培养学生的创新能力。
    (3)采用问题设疑,观察演示,步步深入,层层引发,引导联想、类比,进而发现、归纳的探究式思维训练教学方法。旨在让学生充分感受和理解知识的产生和发展过程。在教师适时的启发点拨下,学生在类比、归纳的过程中积极主动地去探索、发现数学规律(公式),培养学生的创新意识和创新精神。培养学生的思维能力。
    (4)通过能力训练题组和课外思考题,把诱导公式(一)、(二)、(三)、四的应用进一步拓广,把归纳推理和演绎推理有机结合起来,发展学生的思维能力。
    相关推荐
    上一篇:高中数学 离散型随机变量教案 新人教版选修2-3 下一篇:让我印高中数学教案必修三:3.3 几何概型(2)
    版权声明:本站资源均来自互联网或会员发布,仅供研究学习请勿商用以及产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
    Copyright© 2016-2018 好教案 mip.jiaoanhao.com , All Rights Reserved 湘ICP备2020019125号-1 电脑版:好教案