• 二年级数学教案
  • 一年级化学教案
  • 高三北师大版教案
  • 七年级物理教案
  • 五年级北师大版教案
  • 四年级粤教版教案
  • 高三人教版教案
  • 二年级西师大版教案
  • 二年级人教版教案
  • 高二数学教案:第三章 空间向量与立体几何 3.2~09《立体几何中向量方法求角度》(2)(人教A版选修2-1)

    2021-02-11 高二上册数学人教版

    课题:立体几何中向量方法求角度(2)
    课时:09
    课型:新授课
    课后作业:
    1.已知正方体的棱长为2,分别是上的动点,且,确定的位置,使.
    解:建立如图所示的空间直角坐标系,设,
    得,.
    那么,
    从而,,
    由,
    即.
    故分别为的中点时,.
    2.如图4,在底面是直角梯形的四棱锥中,, 面,,求面与面所成二面角的正切值.
    解:建立如图所示的空间直角坐标系,
    则.
    延长交轴于点,易得,
    作于点,连结,
    则即为面与面所成二面角的平面角.
    又由于且,得,
    那么,,
    从而,
    因此.
    故面与面所成二面角的正切值为.
    3.如图2,正三棱柱的底面边长为,侧棱长为,求与侧面所成的角.
    解:建立如图所示的空间直角坐标系,
    则.
    由于是面的法向量,

    故与侧面所成的角为.
    4.平行六面体的底面是菱形,且,试问:当的值为多少时,面?请予以证明.
    解:欲使面,只须,且.
    欲证,只须证,
    即,
    也就是,
    即.
    由于,
    显然,当时,上式成立;
    同理可得,当时,.
    因此,当时,面.
    5.如图:ABCD为矩形,PA⊥平面ABCD,PA=AD,M、N分别是PC、AB中点,
    (1)求证:MN⊥平面PCD;(2)求NM与平面ABCD所成的角的大小.
    6.一条线段夹在一个直二面角的两个面内,它和两个面所成的角都是300,求这条线段与这个二面角的棱所成的角的大小.
    7.正四棱锥S—ABCD中,所有棱长都是2,P为SA的中点,如图.
    (1)求二面角B—SC—D的大小;(2)求DP与SC所成的角的大小.
    8.如图,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1,A1A的中点;
    (1)求
    (2)
    (3)求CB1与平面A1ABB1所成的角的余弦值.
    相关推荐
    上一篇:高中数学教案选修2-2《直接证明》 下一篇:让我印高中数学1.6 三角函数模型的简单应用教案 新人教A版必修4
    版权声明:本站资源均来自互联网或会员发布,仅供研究学习请勿商用以及产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
    Copyright© 2016-2018 好教案 mip.jiaoanhao.com , All Rights Reserved 湘ICP备2020019125号-1 电脑版:好教案