• 九年级北师大版课件
  • 高三冀教版课件
  • 三年级英语课件
  • 五年级语文课件
  • 二年级鲁科版课件
  • 七年级人教版课件
  • 高三化学课件
  • 五年级历史课件
  • 一年级湘教版课件
  • 高中数学必修一配套课时作业集合与函数的概念 1.3.2第2课时 Word版含解析

    2021-01-08 高一上册数学人教版

    第2课时 奇偶性的应用
    课时目标 1.巩固函数奇偶性概念.2.能利用函数的单调性、奇偶性解决有关问题.
    1.定义在R上的奇函数,必有f(0)=____.
    2.若奇函数f(x)在[a,b]上是增函数,且有最大值M,则f(x)在[-b,-a]上是____函数,且有__________.
    3.若偶函数f(x)在(-∞,0)上是减函数,则有f(x)在(0,+∞)上是______________.
    一、选择题
    1.设偶函数f(x)的定义域为R,当x∈[0,+∞)时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是(  )
    A.f(π)>f(-3)>f(-2)
    B.f(π)>f(-2)>f(-3)
    C.f(π)D.f(π)2.已知函数f(x)在[-5,5]上是偶函数,f(x)在[0,5]上是单调函数,且f(-3)A.f(-1)C.f(-3)f(1)
    3.设f(x)是R上的偶函数,且在(0,+∞)上是减函数,若x1<0且x1+x2>0,则(  )
    A.f(-x1)>f(-x2)
    B.f(-x1)=f(-x2)
    C.f(-x1)D.f(-x1)与f(-x2)大小不确定
    4.设奇函数f(x)在(0,+∞)上为减函数,且f(1)=0,则不等式<0的解集为(  )
    A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1)
    C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1)
    5.设f(x)是(-∞,+∞)上的奇函数,且f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于(  )
    A.0.5B.-0.5
    C.1.5D.-1.5
    6.若奇函数f(x)在(0,+∞)上是增函数,又f(-3)=0,则{x|x·f(x)<0}等于(  )
    A.{x|x>3,或-3B.{x|0C.{x|x>3,或x<-3}
    D.{x|0题 号
    1
    2
    3
    4
    5
    6
    答 案
    二、填空题
    7.已知定义在R上的奇函数f(x),当x>0时,f(x)=x2+|x|-1,那么x<0时,f(x)=____________.
    8.若函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则f(x)的递增区间是____________.
    9.已知f(x)=ax7-bx+2且f(-5)=17,则f(5)=____________.
    三、解答题
    10.设定义在[-2,2]上的奇函数f(x)在区间[0,2]上单调递减,若f(m)+f(m-1)>0,求实数m的取值范围.
    11.设函数f(x)在R上是偶函数,在区间(-∞,0)上递增,且f(2a2+a+1)能力提升
    12.若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是(  )
    A.f(x)为奇函数
    B.f(x)为偶函数
    C.f(x)+1为奇函数
    D.f(x)+1为偶函数
    13.若函数y=f(x)对任意x,y∈R,恒有f(x+y)=f(x)+f(y).
    (1)指出y=f(x)的奇偶性,并给予证明;
    (2)如果x>0时,f(x)<0,判断f(x)的单调性;
    (3)在(2)的条件下,若对任意实数x,恒有f(kx2)+f(-x2+x-2)>0成立,求k的取值范围.
    1.函数的奇偶性是其相应图象特殊对称性的反映,也体现了在关于原点对称的定义域的两个区间上函数值及其性质的相互转化,这是对称思想的应用.
    2.(1)根据奇函数的定义,如果一个奇函数在原点处有定义,即f(0)有意义,那么一定有f(0)=0.有时可以用这个结论来否定一个函数为奇函数.
    (2)偶函数的一个重要性质:f(|x|)=f(x),它能使自变量化归到[0,+∞)上,避免分类讨论.
    3.具有奇偶性的函数的单调性的特点:
    (1)奇函数在[a,b]和[-b,-a]上具有相同的单调性.
    (2)偶函数在[a,b]和[-b,-a]上具有相反的单调性.
    第2课时 奇偶性的应用
    知识梳理
    1.0 2.增 最小值-M 3.增函数
    作业设计
    1.A [∵f(x)是偶函数,∴f(-2)=f(2),f(-3)=f(3),
    又∵f(x)在[0,+∞)上是增函数,
    ∴f(2)即f(π)>f(-3)>f(-2).]
    2.D [∵f(-3)=f(3),
    ∴f(3)∴函数f(x)在x∈[0,5]上是减函数.
    ∴f(0)>f(1),故选D.]
    3.A [f(x)是R上的偶函数,
    ∴f(-x1)=f(x1).
    又f(x)在(0,+∞)上是减函数,x2>-x1>0,
    ∴f(-x2)=f(x2)4.C [∵f(x)为奇函数,∴<0,即<0,当x∈(0,+∞),∵f(x)在(0,+∞)上为减函数且f(1)=0,∴当x>1时,f(x)<0.由奇函数图象关于原点对称,所以在(-∞,0)上f(x)为减函数且f(-1)=0,即x<-1时,f(x)>0.综上使<0的解集为(-∞,-1)∪(1,+∞).]
    5.B [由f(x+2)=-f(x),则f(7.5)=f(5.5+2)
    =-f(5.5)=-f(3.5+2)=f(3.5)=f(1.5+2)=-f(1.5)
    =-f(-0.5+2)=f(-0.5)=-f(0.5)=-0.5.]
    6.D [依题意,得x∈(-∞,-3)∪(0,3)时,f(x)<0;
    x∈(-3,0)∪(3,+∞)时,f(x)>0.
    由x·f(x)<0,知x与f(x)异号,
    从而找到满足条件的不等式的解集.]
    7.-x2+x+1
    解析 由题意,当x>0时,f(x)=x2+|x|-1=x2+x-1,
    当x<0时,-x>0,∴f(-x)=(-x)2+(-x)-1=x2-x-1,
    又∵f(-x)=-f(x),
    ∴-f(x)=x2-x-1,即f(x)=-x2+x+1.
    8.(-∞,0]
    解析 因为f(x)是偶函数,所以k-1=0,即k=1.
    ∴f(x)=-x2+3,即f(x)的图象是开口向下的抛物线.
    ∴f(x)的递增区间为(-∞,0].
    9.-13
    解析 (整体思想)f(-5)=a(-5)7-b(-5)+2=17⇒(a·57-5b)=-15,
    ∴f(5)=a·57-b·5+2=-15+2=-13.
    10.解 由f(m)+f(m-1)>0,
    得f(m)>-f(m-1),即f(1-m)又∵f(x)在[0,2]上为减函数且f(x)在[-2,2]上为奇函数,
    ∴f(x)在[-2,2]上为减函数.
    ∴,即,
    解得-1≤m<.
    11.解 由f(x)在R上是偶函数,在区间(-∞,0)上递增,
    可知f(x)在(0,+∞)上递减.
    ∵2a2+a+1=2(a+)2+>0,
    2a2-2a+3=2(a-)2+>0,
    且f(2a2+a+1)∴2a2+a+1>2a2-2a+3,
    即3a-2>0,解得a>.
    12.C [令x1=x2=0,得f(0+0)=f(0)+f(0)+1,
    解得f(0)=-1.
    令x2=-x1=x,得f(0)=f(-x)+f(x)+1,
    即f(-x)+1=-f(x)-1,
    令g(x)=f(x)+1,g(-x)=f(-x)+1,-g(x)=-f(x)-1,
    即g(-x)=-g(x).
    所以函数f(x)+1为奇函数.]
    13.解 (1)令x=y=0,得f(0)=f(0)+f(0),
    ∴f(0)=0.
    令y=-x,得f(0)=f(x)+f(-x),
    ∴f(x)+f(-x)=0,
    即f(x)=-f(-x),所以y=f(x)是奇函数.
    (2)令x+y=x1,x=x2,则y=x1-x2,
    得f(x1)=f(x2)+f(x1-x2).
    设x1>x2,∵x>0时f(x)<0,∴f(x1-x2)<0,
    则f(x1)-f(x2)=f(x1-x2)<0,即f(x1)所以y=f(x)为R上的减函数.
    (3)由f(kx2)+f(-x2+x-2)>0,
    得f(kx2)>-f(-x2+x-2),
    ∵f(x)是奇函数,有f(kx2)>f(x2-x+2),
    又∵f(x)是R上的减函数,
    ∴kx2即(k-1)x2+x-2<0对于x∈R恒成立,
    即,故k<.
    相关推荐
    上一篇:高中数学选修1-1 第一章常用逻辑用语 学业分层测评2 Word版含答案 下一篇:让我印高中数学选修1-1课时提升作业 椭圆及其标准方程Word版含答案
    版权声明:本站资源均来自互联网或会员发布,仅供研究学习请勿商用以及产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
    Copyright© 2016-2018 好教案 mip.jiaoanhao.com , All Rights Reserved 湘ICP备2020019125号-1 电脑版:好教案