• 三年级数学教案
  • 高三青岛版教案
  • 八年级青岛版教案
  • 高一物理教案
  • 一年级岳麓版教案
  • 六年级北师大版教案
  • 三年级北师大版教案
  • 四年级鲁科版教案
  • 教学教案人教版教案
  • 高中数学 2.2.2椭圆的简单几何性质教案 新人教A版选修1-1

    2021-01-22 高一上册数学人教版

    甘肃省金昌市第一中学2014年高中数学 2.2.2椭圆的简单几何性质教案 新人教A版选修1-1
    ◆过程与方法目标
    (1)复习与引入过程
    引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过P48的思考问题,探究椭圆的扁平程度量椭圆的离心率.〖板书〗2.1.2椭圆的简单几何性质.
    (2)新课讲授过程
    (i)通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质.
    提问:研究曲线的几何特征有什么意义?从哪些方面来研究?
    通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.
    (ii)椭圆的简单几何性质
    ①范围:由椭圆的标准方程可得,,进一步得:,同理可得:,即椭圆位于直线和所围成的矩形框图里;
    ②对称性:由以代,以代和代,且以代这三个方面来研究椭圆的标准方程发生变化没有,从而得到椭圆是以轴和轴为对称轴,原点为对称中心;
    ③顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较短的叫做短轴;
    ④离心率: 椭圆的焦距与长轴长的比叫做椭圆的离心率(),; .
    (iii)例题讲解与引申、扩展
    例4 求椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标.
    分析:由椭圆的方程化为标准方程,容易求出.引导学生用椭圆的长轴、短轴、离心率、焦点和顶点的定义即可求相关量.
    扩展:已知椭圆的离心率为,求的值.
    解法剖析:依题意,,但椭圆的焦点位置没有确定,应分类讨论:①当焦点在轴上,即时,有,∴,得;②当焦点在轴上,即时,有,∴.
    例5 如图,一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口是椭圆的一部分,灯丝位于椭圆的一个焦点上,片门位于另一个焦点上,由椭圆一个焦点发出的光线,经过旋转椭圆面反射后集中到另一个焦点.已知,,.建立适当的坐标系,求截口所在椭圆的方程.
    解法剖析:建立适当的直角坐标系,设椭圆的标准方程为,算出的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.
    引申:如图所示, “神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心为一个焦点的椭圆,近地点距地面,远地点距地面,已知地球的半径.建立适当的直角坐标系,求出椭圆的轨迹方程.
    例6如图,设与定点的距离和它到直线:的距离的比是常数,求点的轨迹方程.
    分析:若设点,则,到直线:的距离,则容易得点的轨迹方程.
    引申:(用《几何画板》探究)若点与定点的距离和它到定直线:的距离比是常数,则点的轨迹方程是椭圆.其中定点是焦点,定直线:相应于的准线;由椭圆的对称性,另一焦点,相应于的准线:.
    ◆情感、态度与价值观目标
    在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生创新.必须让学生认同和掌握:椭圆的简单几何性质,能由椭圆的标准方程能直接得到椭圆的范围、对称性、顶点和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;必须让学生认同与熟悉:取近似值的两个原则:①实际问题可以近似计算,也可以不近似计算,②要求近似计算的一定要按要求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.
    ◆能力目标
    (1)分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决问题的能力.
    (2)思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.
    (3)实践能力:培养学生实际动手能力,综合利用已有的知识能力.
    (4)创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的一般的思想、方法和途径.

    相关推荐
    上一篇:高中数学 2.2.8抛物线教案 新人教A版选修1-1 下一篇:让我印高中数学 1.1.1 集合的含义与表示教案 新人教A版必修1
    版权声明:本站资源均来自互联网或会员发布,仅供研究学习请勿商用以及产生法律纠纷本站概不负责!如果侵犯了您的权益请与我们联系!
    Copyright© 2016-2018 好教案 mip.jiaoanhao.com , All Rights Reserved 湘ICP备2020019125号-1 电脑版:好教案